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ABSTRACT
The urban dynamic temporal analysis involves systematically examin-
ing and interpreting spatiotemporal patterns in urban environments,
enabling a deeper understanding of how cities evolve and informing
decision-making processes for sustainable urban development. Using
remote sensing is essential for the investigation of urban dynamic tem-
poral changes by providing a comprehensive and detailed understanding
of urban landscapes over time. This study utilizes Synthetic Aperture
Radar (SAR) satellite imagery acquired from the Sentinel mission to in-
vestigate the detection of urbanization changes within Kochi, a rapidly
expanding metropolitan region in India, between 2015 to 2023. The
urban footprint was calculated using a change detection technique that
relies on supervised classification and was applied to SAR data. Both
training sites and ground truth points (150) were used to estimate the
accuracy assessment. The results of the analysis revealed a significant
increase in urban expansion in Kochi, as indicated by the data. In con-
trast to alternative methods, the Speckle Divergence technique applied
to Vertical-Vertical (VV) and Vertical-Horizontal (VH) polarizations
demonstrates enhanced precision in identifying urban areas. The anal-
ysis accuracy results showed that the study’s data and methodology
could be used to determine the urban footprints efficiently.
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1. INTRODUCTION

Urban expansion is the process by which cities
spread out and harm ecosystems that are vital to
the planet’s well-being and continued existence. Con-
stant rural migration into urban settlements/centers
leads to overcrowding, which strains rehabilitation
services. The trend of more people relocating to
metropolitan areas is known as urbanization. People
shifting from rural to urban areas, which increases
the number of urban residents and the size of ur-
ban areas, is the main cause of it. Employing re-
mote sensing to map urban environments and their
development dynamics across diverse temporal and
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spatial dimensions is a well-established practice (Li
et al., 2020; Prakash et al., 2023; Wang et al., 2019).
The emergence of Synthetic Aperture Radar (SAR)
technology has significantly expanded the possibili-
ties for monitoring urban areas, owing to its capabil-
ity to detect and analyze the polarimetric character-
istics of both artificial structures and natural scatter-
ing elements (Yamaguchi et al., 2005). Research find-
ings indicate the identification of urban environments
through the utilization of speckle divergence analysis.
This method effectively accentuates regions distin-
guished by diverse and extensively organized built-
up segments (Esch et al., 2009; Thiel et al., 2008).
The technique of Persistent Scatterer Interferometry
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Synthetic Aperture (PSInSAR) presents an advanced
form of Differential Interferometry Synthetic Aper-
ture Radar (DSInSAR) technology. It excels in iden-
tifying and tracking changes in Earth’s surface dy-
namics across temporal intervals. This methodology
amalgamates a series of SAR images taken over time,
enabling the detection and measurement of delicate
surface shifts (subsidence or uplift) on various scales,
spanning from local to regional. Central to this ap-
proach are coherent and enduring radar reflectors re-
ferred to as Persistent Scatterers (PS), which pre-
dominantly encompass steady radar responses over
extended periods. These scatterers often manifest as
either artificial structures or natural elements (Wang
et al., 2022).

In the recent years, change detection methods
have extensively utilized remote sensing information.
The presence of remote sensing data enhances both
the caliber and quantity of observing and assess-
ing the progression of urbanization (Alharthi et al.,
2020). The precision of spatial accuracy can vary in
urban expansion scenarios (Bahrawi et al., 2020). Al-
tering the configuration of the Earth’s surface could
potentially result in catastrophic events, especially if
there are significant modifications to the morpholog-
ical features of a specific region (Elhag et al., 2013;
Massonnet and Feigl, 1998; Schumm, 1979) utilized
SAR and ERS datasets to observe the process of ur-
banization. Esch et al. (2009) explored a method
for the semi-automated identification of urbanized
regions using single polarized TSX images, with a
specific emphasis on analyzing speckle characteris-
tics. Taubenböck et al. (2012) examined the urban
expansion of 27 megacities through the utilization of
Landsat and TerraSAR-X. SAR imagery finds its pre-
dominant applications in the ecological oversight of
land-based settings. This investigation leverages SAR
satellite images sourced from the Sentinel missions to
scrutinize the progression of urbanization and alter-
ation in Land Use and Land Cover (LULC) within
Kochi, a rapidly expanding metropolitan expanse in
India, spanning the temporal span from 2015 to 2023.

2. METHODOLOGY

2.1. Study area

The Greater Cochin Development Authority
(GCDA) is in charge of the metropolitan area of
Kochi’s planning and development. The GCDA’s ju-
risdictional area includes Kochi City, Kerala’s com-

mercial hub, Kochi Corporation, nine neighbouring
municipalities, and 21 intervening panchayats, a to-
tal of 632 sq.km (May and Jose, 2009). A port city
with a population of around 2.1 million, Kochi is sit-
uated at 10°N and 76°E on the southwestern coast
of India. Greater Kochi includes the remainder of
the Cochin Peninsular, British-made Wellington Is-
land, other islands west of the mainland, and a sizable
portion of the mainland of Ernakulum (Satheendran
et al., 2022). In the preceding three decades, Kochi
has experienced swift population expansion. Accord-
ing to the 2001 census data, the population of Kochi
was 596473 (Shreekumar et al., 2021). The urban
areas are crisscrossed by estuaries nourished by con-
tinuous inflows from rivers. A significant portion of
Kochi is situated at the same altitude as the sea. The
climate of Kochi showcases a tropical monsoon pat-
tern (Thomas et al., 2014). An illustrative depiction
of the research site is presented in Fig. 1.

2.2. Sentinel-1 data sets

The Sentinel-1 sensor was created to operate
in the electromagnetic spectrum’s microwave region.
Based on S1A and S1B instruments, Sentinel-1 deliv-
ers multi-temporal SAR data with a temporal resolu-
tion of 12 days. Sentinel-1A is made to take four dif-
ferent acquisitions in the C-band (4.0-8.0 GHz) to im-
age the electromagnetic spectrum. Sentinel-1 is a col-
lection of radiometrically calibrated, thermally noise-
corrected, and geometrically terrain-corrected SAR
satellite images. The products made by Sentinel-1
are either single-polarized or dual-polarized. Ver-
tical transmit/vertical receive, or HH (Horizontal
transmit/Horizontal receive), are the two possible
single-polarized products. Similar to this, dual-
polarized products can be polarized as ”HH+HV”
(Horizontal transmit/Horizontal receive and horizon-
tal transmit/vertical receive) or ”VV+VH” (Ver-
tical transmit/Vertical receive and Vertical trans-
mit/Horizontal receive). The pixels used to create
the images are roughly square (10 m × 10 m). In-
formation regarding the utilized Sentinel-1 image for
research was presented in Table 1.

2.3. SAR Data Processing

The data preparation included image filtering,
terrain correction, geometric correction, and speckle
divergence SAR data. Subsequently, a fusion of
Google Earth and Sentinel-1 data was executed to
generate a sub-image, possessing a spatial resolution
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Fig. 1. Greater Cochin Development Authority (GCDA), Kochi Area.

Table 1. Description of the SAR products used in the project.
Satellite Product Date of Acquisition Spatial Resolution Temporal Resolution
Sentinel-1 log-scaled SAR Mean image from image collection (2015-02-26) 10 m 12 days
Sentinel-1 log-scaled SAR Mean image from image collection (2023-02-20) 10 m 12 days

of 10 m. The Sentinel Application Platform (SNAP)
software was then used for atmospheric correction,
picture mosaicking, multi-look processing, SAR data
filtering, and geometric correction. The polarized
SAR image underwent resampling to a 10 m reso-
lution using the nearest-neighbour resampling tech-
nique. Resampling was performed to facilitate the
integration of optical imagery with the SAR datasets.
Owing to inherent geometric imprecision and the im-
pact of atmospheric conditions, it is imperative to un-
dertake radiometric and geometric correction on SAR
imagery prior to its applications, ensuring utmost
precision. When employing single-data or multi-data
images for classification purposes, the utilization of
Ground Control Points (GCP) facilitates the achieve-
ment of geometric accuracy, thereby elucidating the
necessity for radiometric rectification. While an
individual-dated image may bypass atmospheric ad-
justments, the significance of radiometric correction
becomes pronounced when categorizing photographs
from diverse temporal instances.

The primary emphasis of this study revolves
around Level-1 ground range detected data acquired
via the Interferometric Wide swath products, rep-
resenting the standard data collection method over
terrestrial regions. The source imagery for this re-
search is from the Sentinel’s Scientific Data Hub, an
openly accessible resource for scientific study. The
collection encompasses both the original satellite im-
agery and their radiometrically calibrated duplicates.
It is noteworthy that the radar backscattering from
the Earth’s surface exhibits a direct correlation with
the pixel values found in data that has undergone ra-
diometric certification. The calibrated edition of the
SAR data becomes imperative for quantitative appli-
cations, contrasting with the qualitative utilization of
the initial SAR data. The calibration of radiometric
SAR visuals was executed through the utilization of
the SNAP program. In this study, GeoTIFF format
images were employed for both the raw data and its
corresponding calibrated iteration. The process of di-
rectly and professionally annotating SAR images is an
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intricate and time-intensive undertaking. Moreover,
the relatively subpar quality of the images renders the
task of identifying the target category exceedingly ar-
duous. A potential solution to these challenges arises
from utilizing optical images sourced from the Google
Earth Engine, which effectively narrows the gap be-
tween radar’s active imaging modes. In the context
of this, human observation swiftly identifies optical
images, leading to precise annotations.

The present research involves an analysis of two
distinct Sentinel-1A SAR images: one captured on
February 26, 2015, and another on February 20, 2023.
Subsequently, the orbit file and the Sentinel-1A im-
age are inputted into SNAP jointly. To convert the
intensity measurements from the Sentinel-1A image
into sigma naught, a radiometric calibration tech-
nique is applied. The geographical scope of interest,
represented by the GCDA, is applied to both sets
of Sentinel-1 SAR data. This step includes terrain
flattening and geometric adjustment to align with
the study region accurately. Essential data for im-
plementing the calibration equation are integrated
within the Sentinel-1 Ground Range Detected (GRD)
product. The process involves executing radiometric
calibration and selecting the newly generated orbit
file from the source product dropdown menu within
the input-output parameters. It is important to
note that ongoing processes do not propagate speckle.
Therefore, caution is advised against applying speckle
filtering when identifying minor spatial features or
preserving image texture is crucial.

Among various single-product speckle filters, the
refined Lee filter outperforms others in terms of visual
interpretation due to its ability to maintain edges, lin-
ear characteristics, point targets, and texture details.
To mitigate these distortions and achieve a geomet-
ric representation of the image closely resembling re-
ality, terrain corrections are essential. In this study,
the Range-Doppler terrain correction method is em-
ployed. SNAP offers the Range-Doppler terrain cor-
rection operator, implementing the necessary adjust-
ments.

Ortho-rectification techniques for geocoding SAR
scenes acquired in radar geometry are employed.
Aligning with the Sentinel-1 UTM zone, the desired
Coordinate Reference System (CRS) is established.
Within this framework, the operator has the flexibil-
ity to designate both the desired pixel spacing in the
new CRS and the preferred method of image resam-
pling. This processing stage also enables the spatial

alignment of Sentinel-1 GRD products, thereby fa-
cilitating the geolocation of data onto a unified spa-
tial grid. This strategic step fosters the utilization of
satellite virtual constellations.

The SNAP software uses the cluster analysis
method to categorize Sentinel-1 data without super-
vision. Started by loading the Sentinel-1 data into
SNAP and filtering and calibrating it beforehand
then, a subset of the previously processed data was
produced for use. They selected the cluster analysis
algorithm from the list of SNAP possibilities and ad-
justed the parameters to suit the requirements. The
parameters included the clustering technique and the
number of clusters that would be created. Executed
the cluster analysis method on the subset of data once
the settings were established. As a result, various
clusters within the data emerged based on their simi-
larity to one another. The clusters were visualized us-
ing SNAP built-in visualization capabilities and vali-
dated to ensure they were correct and relevant to the
study.

The application of the Random Forest algorithm
within the SNAP software facilitated the utilization
of a supervised classification approach on Sentinel-1
data. This procedural strategy aimed to categorize
diverse land cover classifications within a specified
region of interest (De Luca et al., 2022; Valdivieso-
Ros et al., 2023). Table 2 illustrates the catego-
rization employed in the research. To enhance im-
age quality and minimize interference, a sequence
of pre-processing steps was applied to the Sentinel-
1 data. Radiometric alignment, multi-looking proce-
dures, speckle reduction techniques, and terrain ad-
justments comprised the pre-processing phase. Fol-
lowing these preparatory measures, the data stood
primed for the classification phase. Harnessing the
Random Forest algorithm, a prevalent machine learn-
ing tool for classification tasks, the algorithm un-
derwent training using a selection of training sam-
ples extracted from the study vicinity. These train-
ing samples were meticulously categorized to align
with distinctive land cover categories. Employing
the trained Random Forest algorithm, the classifi-
cation endeavour unfolded, culminating in the orga-
nization of Sentinel-1 data into discrete land cover
classes. The assessment of classification accuracy en-
sued through a confusion matrix, presenting insights
into accurately and erroneously classified pixels. The
outcomes of the classification process underscored the
efficacy of the Random Forest algorithm in catego-
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Table 2. Categorization framework employed in the study.
Urban Includes built-up areas like residential, industrial, and commercial areas except for roads
Waterbody Includes lakes, ponds, and rivers
Paddy field Includes flooded fields of arable land used for growing semiaquatic crops, most notably rice and taro.
Vegetation Includes agricultural croplands

rizing diverse land cover types within the research
area. This was highlighted by the notable accuracy
achieved in the overall classification, emphasizing the
algorithm’s proficiency in this context.

Various techniques for filtering and processing
were employed to mitigate the effects of speckle di-
vergence and enhance the caliber of radar imagery
utilized in urban cartography (Hyyppä et al., 2015).
The SNAP application was employed to execute su-
pervised classification on Sentinel-1 data through the
utilization of the random forest methodology in the
presence of speckle divergence (Fiorillo et al., 2020;
Tavares et al., 2019). Filtering methodologies were
deployed to eradicate noise and speckle artifacts from
the dataset. The classification task was conducted
utilizing a training dataset containing instances rep-
resenting diverse land cover categories. Using the
speckle divergence metrics of individual pixels within
the Sentinel-1 dataset, the system underwent training
to effectively categorize them into distinct land cover
classes.

Employing the random forest algorithm and
speckle divergence within the framework of the SNAP
emerged as a highly effective approach for carto-
graphic land cover delineation using Sentinel-1 data.
The outcomes yielded high precision and imparted
valuable insights applicable to land administration
and surveillance purposes.

2.4. GIS Environment and Accuracy

Two separate collections of measurements were
employed to evaluate precision. The initial phase
encompassed the compilation of 30 training loca-
tions, with 20 designated for instructing the super-
vised classifier and the remaining 10 reserved for
cross-validation through Google Earth imagery. To
substantiate the urban footprint delineation of both
SAR and Google Earth data, 150 authentic reference
points were amassed and uniformly spread across the
chosen study area as the secondary metric for assess-
ing accuracy. Redefining the combined SAR data
within the context of GIS parameters enabled the
quantitative cartographic representation of urbaniza-
tion shifts. The transformation involved changing in-
teger values to convert floating point information into

a vectorised structure. Utilizing the algorithm of nat-
ural breaks classification, the vector-based stratum
underwent segmentation into diverse categories. Sub-
sequently, the classification segment wasoverlaid onto
a foundational map to evaluate alterations within the
urban landscape (Harikumar et al., 2012; Schultz and
Engman, 2012).

3. RESULTS AND DISCUSSION

Sentinel-1 data, encompassing SAR imagery, has
proven efficacious in the continuous monitoring and
analysis of urban sprawl. The study area exempli-
fies an urban landscape, comprising roadways, edi-
fices, sparse greenery, arboreal elements, and a di-
verse array of features spanning a broader spectral
spectrum. These attributes necessitate systematic
categorization, entailing the compilation of distinct
spectral signatures indispensable for this research en-
deavour. This meticulous approach is imperative due
to the resampled spatial resolution of the multi spec-
tral imagery being 10 meters. Employing a mean
reduction technique, the Sentinel-1 images, pivotal
to the study, were procured from image repositories
corresponding to the 2015 and 2023 periods of in-
terest. These Sentinel-1 images, showcased through
the ’VV’, ’VH’, and ’VV’ bands, were mapped onto
the red, green, and blue colour channels, sequen-
tially. Evidently, urban sectors manifest heightened
backscatter in the ’VV’ band. To facilitate image
classification and ensure accuracy, training, and vali-
dation samples were derived from high-resolution im-
agery of the study area. The assortment of these
samples from both Sentinel-1 data and Google Earth
images from the years 2015 and 2023 respectively is
integral to the process of classification and precision
assessment.

The utilization of speckle divergence analysis fa-
cilitates a more effective differentiation of settlement
regions and their attributes compared to reliance
solely on intensity imagery (Fig. 2). Notably, the
application of speckle divergence analysis enhances
the visual clarity and luminosity of settlement areas.
Consequently, this outcome was subsequently har-
nessed to advance the classification of settlements in
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Fig. 2. Comparison of pre-processing approaches on VV bands of SAR data (a) Gamma VV (2015) (b) Gamma VV Speckle
Divergence (2023).

conjunction with Sentinel-1 imagery. A texture rep-
resentation emerges from the localized speckle char-
acteristics present in the SAR intensity information.
The divergence in the speckle pattern approach cap-
italizes on the contrast between the heterogeneity
observed in local images and the anticipated scene-
specific heterogeneity of the well-defined speckle pat-
tern. This method operates under the presumption
that when a resolution cell contains a greater num-
ber of actual structures, the deviation at a local level
from the meticulously generated speckle (Baydogan
and Sarp, 2022; Dekker et al., 2011; Jiang et al.,
2020).

4. CONCLUSION

The GCDA was taken as a case study represent-
ing a swiftly expanding urban area. Detecting the
urban footprint was effectively examined by employ-
ing diverse classifiers on a variety of remote sensing
data, encompassing Google Earth and microwave in-
formation. The model has achieved an optimal clas-
sification count and has displayed stability, as evi-
denced by the minor deviations in class sensitivity
analysis. Consequently, any potential increase in

the number of classes will not yield substantial al-
terations in the percentage shift. To pinpoint the
spectral characteristics of the classes encompassed
within the designated study vicinity and utilize them
as reference sites for supervised classification decision
trees, it is essential to first determine the most stable
number of classes from the unsupervised classifica-
tion. The outcomes of the present research under-
score the imperative of synergizing microwave and
optical remote sensing data to attain precise urban
footprint mapping. Illustratively, the urban foot-
print of the GCDA was proficiently charted by em-
ploying the yellow range thresholds of the consoli-
dated stacked layer. This case serves as an exam-
ple of an urbanized coastal municipality with lim-
ited vegetative covering. Notably, urban elements
exhibit higher brightness in comparison to other land
use categories due to VV speckle divergence. Fur-
thermore, the exceptional spatial resolution of the
Sentinel-1A image enabled the identification of intri-
cate details down to the building level utilizing the
applied methodology. Identifying urban zones is now
facilitated, particularly owing to the backscatter orig-
inating from vertical structures such as building areas
and rooftops.
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